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ABSTRACT

The stability of motion of a satellite consisting of a main
rigid body and three pairs of flexible booms, coinciding with the
principal axes of the body in undeformed state, is under consider-
ation., The problem formulation is a hybrid one, in the sense that
some of the generalized coordinates depend on time alone and the
other depend on spatial position and time. The problem is trans-
formed into a discrete one by means of modal analysis. The motion
stability is investigated by the Liapunov second method. A computer
program has been written and the numerical results are displayed
in the form of stability diagrams using the system properties as

parameters,
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Introduction

The rotational motion of a torque-free rigid body is known
to be stable if the rotation takes place about an axis corresponding
to the maximum or minimum moment of inertia, but the motion is un-

 stable if the rotation takes place about the axis of intermediate mo-
ment of inertial(see, for example, Reference 1, Section 6.7). If
the body is not entirely rigid but possessing deformable parts, the
rotational motion can be expected to exhibit different stability
characteristics. .

In one of the first attempts to treat rigorously distributed
elastic members, the stability of motion of a spinning symmetric
body which is part rigid and part elastic has been investigated by
Meirovitch and Nelson (Reference 2). The mathematical formulation
in Reference 2 consists of a set of ordinary‘differential equations
for the rotational motion and another set of partial differential
equations describing the elastic displacements. We shall refer to
a system of both ordinary and partial differential equations as
"hybrid." The hybrid system of Reference 2 has been reduced to a
system consisting entirely of ordinary differential equations by
means of modal analysis. The stability of the resulting discrete

~ system has been investigated by an infinitesimal analysis and the
effect of the flexible parts on the motion stability has been dis-
played in the form of diagrams relating various parameters of the
system. _ ' ‘

A general and rigorous method for the stability analysis of

systems containing distributed elastic parts has been developed by

- Meirovitch (Reference 3). The methbd represents an extension of the
Liapunov second method and works directly with the hybrid system
of differential equations (in the sense defined above). As an
application, the case of gravity-gradient stabilization of a satel~
lite with flexible appendages is solved. The méthod has been further
extended to hybrid systems possessing ignorable coordinates (Reference
4). The general theory is applied to the stability analysis of a
spinning satellite resembling that of Reference 2.




The problem under investigation is related to that of Refe-
rence 4. However, whereas the mathematical model used as an ill-
ustration in Reference 4 consists of a main rigid body with a pair
of booms aligned with the spin axis, the model considered here con-
sists of a main rigid body and three pairs of booms, as shown in
Figure 2. It turns out that the elastic deformations are not in-
dependent of one another, so that it is not possikle to work directly
with the hybrid system of‘equations. The formulation is reduced to
a set of ordinary differential equations by modal analysis and the
stability of such a set can be investigated by the Liapunov second
method. Due to its generality, the problem formulation of Reference
4 is equally applicable here. The present investigation departs from
that of Reference 4 in the stability analysis. '

This report contains the formulation of the problem, as well as
numerical results obtained by means of a computer program designed to
perform the stability analysis. The program has been used to investigate
the effect of changes in the parameters of the system on its stability.

General Problem Formulation

Let us consider a body of total mass m moving relative to an
inertial space XYZ, as shown in Figure 1l. The entire body or parts
~of the body are capable of small elastic deformations from a refer-
ence equilibrium position coinciding with the undeformed state of
the body. Next we define two sets of body axes, the set xyz with
the origin at point 0 and coinciding with the principal axes of the
- body in the undeformed state, and the set Zng which is parallel to
xXyz but has the origin at the center of mass ¢ of the deformed body.
We note that &nz is not a principal set of axes. The set xyz serves
as a suitable reference frame for measuring elastic deformations
whereas the set gng is more convenient for expressing the overall
motion. The position of a typical point in the undeformed body

relative to axes xyz is denoted by the vector* r = xi + yj + zk

* Vector quantities are denoted by wavy lines under the symbols.



and the elastic displacement of an element of mass dm, originally
coincident with that point, by the vector u = ulx,y,z,t)i + vix,y,z,t)]
+ wix,y,z,t)k, where i,j,k are unit vectors along axes X,v,z {(or

axes g,n,t), respectively. The radius vector from point 0 to c¢ is
given by I. = % g (r+u)dm = % g y dm, where we note that g r dm

. m m m

is zero by virtue of the fact that 0 is the center of mass of the

undeformed body. All integrations involved in this report are carried
over the domain occupied by the body in undeformed state, which is
designated as the reference state. '

From Figure 1 we conclude that the position of the mass element
dm relative to the inertial space is Ry = R, + r + u,, where u_ =
B~z = uci f vci + wc§_represents the displacement vector measured
with respect to axes &nr and §c is the position of the origin of these
axes relative to the inertial space. Assuming that axes xyz, hence
also axes &ng, rotate with apgular velocity g.= wg%-+ wni + wg%vrel_
ative to the inertial space, and denoting by Eé = uc£_+ vci_+ wc& the
velocity of dm relative to gng due to the elastic effect, it is shown

in Reference 3 that the kinetic energy has the expression

_l 0.0 __-]; -.0 _]:-
T=3 Sm Rg  Bqdm =5 mE B+ 5 wdg-u

A

o1 t! i T, !
+ (wx gm(g +u))-8) am + 2 gm 4. 4l am (1)

where gd is the inertia dyadic of the deformed body about axes &nt.

. The elements of the dyadic are

_ | 2 2 _ _ |

Jgg = Sm [(y+yc) +(z+w ) ]dm ' Jgn = Jn& = gm(x+uc)(y+vc)dm
_ 2 2 _ _(

Jnn B gm [(X+uc) +(z4w ) ]dm ' ch = J;g = Sm(x+uc) (ztw_)dm  (2)
_ 2 2 _ _

I, = Sm [(x+uc) +(y+v,) ]dm p3 =T, = Sm(y+vc) (z+w ) dm




The kinetic energy can be written conveniently in terms of
matrix notation. If {ﬁc} is the column matrix corresponding to EC?
{w} the column matrix corresponding to w, and [J] the symmetric

matrix, whose elements are the elements of the dyadic J then Eg. (1)

dl
can be rewritten in the form

1 (e 1T¢ e 1 T T 1 .2 .2,.2
T = on{R IR+ e} [Tl e} +{K) (0] 3 gm(uc+vc+wc)dm (3)
where { K} is the column matrix with the elements

KE = gm [}y+vc)wq f (z+wc)vC] dm

Kn = gm [}z+wc)uc - (x+uc)wc] dm (4)

KC = gm [}x+uc)$c - (y+vc)ﬁc] dm

LI do not represent time

rates of change of certain angles but nonintegrable combinations of

The angular velocity components w

time derivatives of angular displacements. They are sometimes
referred to as time derivatives of quasi-cocordinates. Denoting by
05 and éi (i=1,2,3) the true angular displacements and their time
rates of change, the angular velocity vector can be written in the
- matrix form {w} = Ee]{é}, where {6} is the column matrix with ele-
ments éi(i=l,2,3) and [6] is a 3x3 matrix{\whose elements depend on
the order of the three rotations ei used to produce the orientation
of axes gng relative to an inertial space. In view of this, the
kinetic energy can be written in terms of true angular velocities
~as follows o ‘

v = m{k_JT{R J+ HEIT[2106) + (n)T8Y + 2 gm (@2+v24il)am (5)

in which the notation

[1] = [e17[910e] .+ {1} = [e]7(x} | | ()
has been adopted. ‘ '

The potential energy arises primarily from two sources, namely

gravity and body elasticity. The gravitational potential energy




is assumed to be very small compared with the kinetic energy, or
the elastic potential energy, and will be ignored. The elastic

potential energy, denoted by V and referred to at times as strain

EL
energy, depends on the nature of the elastic members and is in

general a function of the partial derivatives of the elastic dis-
placements u,v,w with respect to the spatial variables x,y,z. Since

ULV differ from u,v,w by XY 12y respectively, where the

C c

latter are independent of the spatial variables, can be regarded

v
EL
as depending on the partial derivatives of UL sV W with respect to

X,¥,2. We assume that VEL is a function of azuc/axz, 82uc/ax3y, -

Bzwc/az2

formulation. This particular functional dependence of VEL should be
regarded as mere scaffolding used in the construction of a general

but this assumption in no way affects the generality of the

theory, as the final formulation is expressed in a form which involves
the partial derivatives only implicitly.

The system differential equations can be obtained by means of
Hamilton's principle. To this end, a brief discussion of the gener-
alized coordinates is in order. The motion of the mass center ¢
is generally assumed not to be affected by the motion relative to
¢, so that it is possible to solve for the motion of ¢ independently
ofﬁthe motion relative to ¢. As a result, the motion of ¢, referred
to as orbital motion, can be regarded as known. We shall confine

ourselves to the case in which the first term on the right side of

—Eqg. (5) reduces to a known constant, so that the term can be ignored.

This is clearly the case when the orbit is circular, or the motion
of ¢ is uniform or zero. It follows that the system generalized
coordinates are the three rotations ei(t) and the three elastic
displacements uc(x,y,z,t), vc(x,y,z,t), wc(x,y,z,t). The elastic
displacements are defined only throughout the domain De' namely the
subdomain of D corresponding to the elastic continuum, where D is

a three-dimensional domain corresponding to the entire body. The

domain De is bounded by the surface S.




For the holonomic system at hand, Hamilton's principle has
the form

where the motion must be such that the end conditions

661 = 592 = 663 = 6uc = Gvc = éwc =0 at t = tl,t2 (83

are satisfied. The integrand L in (7) is the Lagrangian which has
the general functional form
82u azuc azw

L = T-V L(ei,é.,u ;v ,—-—,ﬁc, <) dD

EL gD i’“c’c axg " dxdy f ! 822 (9)
in which i is the Lagrangian density.

An application of Hamilton's principle leads to the system
Lagrangian equations of motion. Details of the derivation are
given in Reference 3 and will not be repeated here. Instead we quote
directly from Reference 3 the ordinary differential equations for the
angular displacements.

3L _d Ly -9¢ , i=1,2,3 | (10)

aei dt aéi .

and the partial differential equations for the elastic displacements

oL 5oL S
e - 2o () + L [u v ,w ] +0Q. =0
auc ot auc u, c’'c¢’e u,
3L 9 oL . _ o
3v. ~ 3t 5w +CZv [ogrvgmg] +0, =0 (11)
c c c c
3L 3 oL S
Sw. 3t ow) +‘Z§ [ugrvemig] +Q, =0
c c c c
where Egs. (l1l) must be satisfied at every point of the domain De’
Moreover, Eqgs. (11) are subject to the boundary conditions
Ej [uc,vc,wcj' By [uc,vc,wc] =0 onS, j=1,2; k = 3,4 (12)




The differential operator vectors iC(Iu s L. ,&L )y, B.(B JB.._ ,B. ),

c Ve Ve =] juc Ve IV
and gk(Bku ’Bkvc'Bkwc) are defined by the following integration by
parts

~ 2 o~ 2
3T, 0 uc 5L ] 9 uC
3 7o S(—=) + 2 (3xay)
D~ 3 (3"u_/ex") ox 9 (8%u_/oxay)
5L, | azwcv
: S ( )]dD=g Llu ,v_ ,w 1-6u dp_ +
5 (3%w_/32%) 222 D L [erverve] e dng
c e
Ej [uc’vc’wc:}’gk‘[uc’vc’wc] ’ j*= 1,2; k = 3,4 (13)

S

We note that the partial derivatives Bzuc/axz, azuc/axay,-—~,32wc/822

enter into Egs. (11) and (12) only implicitly through the differential

operator vectors £, Ej' and gk’ thus lending substance to a statement

‘made earlier regarding the generality of the formulation. The guant~

ities Q, 7 9, r Q, represent distributed internal damping forces which
c c c

depend on the elastic motion alone and not on the rotational motion.

It should be pointed out that the damping forces were added afterward,
...as.such forces cannot be treated by means of Hamilton's principle.

Introducing the generalized momenta

3L . o

Py = — ;, 1 =1,2,3
i 36 |

~ 3L ~ 3L s~ L

Py = 74 r Py TEF r Py T (14)
C C C C C C

where the latter three are momentum densities, it is shown in Reference
3 that the second-order Lagrangian equations, Egs. (10) and (11), can
be converted into twice the number of first—order Hamiltonian eguations
having the form




é' = ’ P = - T 7 i=1,2,3
i Bpe. ei aei
i
- ~ N 3
o 3H 3 3 H . 3H
u = Lo v_ = &5 w_ o= 22
c 3B, ’ c 3By 7 c ab,, -
c e c
2 _ o H ~ - ;
puC - 3u +'xu Luc’vc’wc] + QuC (15)
7 at every point of De
2 _ aﬁ N
Py, = oV +"xv [uc’vc’wc] +Qy
c c c c
Lo _ aﬁ ~
Py, = oW +‘Zw [uc,vc,wc] +Qy J
c c c c

in which H is the Hamiltonian defined by

3

m= ) p, byt ( By g + By I * B, #o) @ - T (16)
~ De

and H is the corresponding Hamiltonian density. It should be noticed

here that the Hamiltonian has a hybrid form as it is a function and

a functional at the same time. The eqguations for the elastic motion

are subject to the same boundary conditions, Egs. (12). When the

kinetic energy is quadratic in the generalized velocities, the Hamil-

‘tonian reduces to the form

H=TH+ Vg, — (17)

which is recognized as the system total energy.

Systems with Ignorable Coordinates

In the case of a system free of external £orques, such as the

case under consideration, one of the angular coordinates ei(i=l,2,3)

is absent from the Lagrangian. Then from Egs. (10) and the first half
of Egs. (14) it follows that the system possesses a first integral of
the motion in the form of the conjugate momentum. The expression of
the conserved momentum'may be used to eliminate from the Lagrangian the
angular velocity associated with the absent angular coordinate, thus
reducing the number of degrees of freedom by one. The procedure for
accomplishing this is referred to as Routh's method for the ignoration

of coordinates (see Reference 1, Section 2.11).



Let us assume that 63 is absent from the Lagrangian, so that
the conjugate momentum is conserved, Py = aL/aé3 = B, = constant.
Since the potential energy does not depénd on velocities, from
Eg. (5) the momentum integral can be written as
s T aa 1 238y T I3385 + Ly = ) (18)

3 3
Equation (18) piays the role of a constraint equation, which can be
solved for é3 in terms of él and éz. Since the elements of the
angular velocity matrix {éﬂ in Eq. (5) can no longer be considered

'independent but related by (18), we can define the linear transfor-

mation
6, | Ia3 0 . 0

{é =21 o I {?1K+—L 0 = [c]{é*] +{B] (19)
.2 I, 33 |} 6, I, |

BE "tz T3 B33

which takes Egq. (18) into account automatically. By contrast with
{éﬁ, the column matrix aé*ﬁ contains only two elements, which must
be regarded as independent. Introducing Eg. (19) into (5), and
disregarding the first term (assumed to be constant), we obtain

2

6 —
1 (+,3T . T . 1 837k3 g 22 .2 .2
T =3 {ox} [T*]{ 6%} j {Lx} T (6%} +/§'\I3 + 5 S (v +w ) dm
- 3 m
: (20)
where -
2 B _
I111337 113 I15T337 113153
T —
[1+] = [cI"[1](c] = 1—537
: | R
T121337 113123 1521337153
B - (21
| . L I330 717303
{r*} = [l L} = +—
33 I33L2-123L3




We notice that the kinetic energy, Eg. (20), is entirely free of
93 and 3. ,

The elastic potential energy VEL is assumed to depend only on
the elastic displacements UV rW, and its general form will be

introduced later.

Stabilitylof Motion of a Dynamical‘System

Let us consider the dynamical system

X = X(x) ’ (22)
For a discrete system x = x(t) represents a vector in a finite dim-
ensional vector space S. The motion of the system can be represented
~as a path in that space. If Eq. (22) represents a set of canonical
equations, then the motion of the dynamical system can be regarded as
a succession of infinitesimal contact transformations possessing the
group-property. The properties characterizing the group are as
follows: 1) the identity transformation belongs to this class, 2)
two successive transformations are commutative and the result is also
a contact transformation, 3) two contact transformations satisfy the
associative law, and 4) the inverse of a contact transformation is
also a contact transformation. Hence, the motion of the system may
be interpreted as a continuous mapping of the space S onto itself.
For canonical systems of‘;quations half of the elements of x represent
generalized coordinates and the remaining half represent the conjugate
momenta. Moreover, the space S is simply £he phase space.

A solution of Eg. (22) satisfying

X(x) =0 * (23)
represents a singular point or an equilibrium position. We shall be
interested in the stability of the solutions in the neighborhood of
‘equilibrium positions. Without loss of generality, we can assume that
the equilibrium point coincides with the origin so that we shall be
concerned with thé equilibrium of the trivial solution. Denoting the
integral curve at a given time t0 > 0 by g(to) = Xor and assuming that
the origin is an isolated singularity, we can introduce the following

definitions due to Liapunov:

10



a. The null solution is stable in the sense of Liapunov if any

arbitrary positive ¢ and time t0 there exists a G(E,to) > 0

such that if the inequality

I3l < 6 (24)
is satisfield, then the inequality

I x(B))] .< € ' tp s t < ‘ (25)
is implied. If s is independent of tg the stability is said
to be uniform.

b. The null solution is asymptotically stable if it is Liapunov

stable and in addition
Clim () =0 | (26)
t > )

Similarly, if Eg. (26) holds, then a uniformly stable solution

is said to be uniformly asymptotically stable. For autonomous

systems stability is always uniform.
¢. The null solution is said to be unstable if for any arbitrarily
small 6 and any time tO such that

Ixyl < 8 (27)
we have at some other finite time tl the situation

/

To test the stability of the trivial solution, we shall use
Liapunov's direct method which is based on the differential eguation
(22) but does not require the solution of this equation. To introduce
the concepts, we confine ourselves to -autonomous systems and consider

a scalar function U(§)ﬂsuch that U(0) = 0. The total time derivative
of U along a trajectory of system (22) is defined by

ﬁ=g—%=gu-g=gu-§ (29)
where VU is the gradient of the scalar function U. In the case of

a hybrid system Uwis both a function and a functional at the same

time, as the dependent variables corresponding to the distributed

portion of the system appear in U in integrated form.

11



Next we consider the following theorems:
Theorem I - If there exists for the system (22) a positive (nega-
tive) definite function U(x) whose total time derivative ﬁ(§) is
negative (positive) semidefinite along every trajectory of (21),
then the trivial solution x = 0 is stable.

Theorem II - If the conditions of Theorem I are gatisfied and if

in addition the set of points at which ﬁ(g) is zero contains no

nontrivial positive half-trajectory x(t), t =ty then the trivial

solution is asymptotically stable.
Theorem III -~ If there exists for the system (22) a function U(x)

whose total time derivative ﬁ(§) is positive (negative) definite
along every trajectory of (21) and the function itself can assume
positive (negative) values in the neighborhood of the origin, then
the trivial solution is unstable.

Theorem IV - Suppose that a function U(x) such as in Theorem III

exists but for which ﬁ(g) is only positive (negative) semidefinite

and, in addition, the set of points at which ﬁ(g) is zero contains

no nontrivial positive half-trajectory x(t), t = ty- Suppose further
that in every neighborhood of the origin there is a point §(t0) = X

such that for arbitrary t, > 0 we have U(go) > 0(<0). Then the

trivial solution is unstagle and the trajectories §(§0,t0,t) for
which U(§O) > 0(<0) must Jeave the open domain |X{<e as the time t
increases. o ‘

A function U satisfying any of the preceding theorems is referred

to as a Liapunov function. Theorems I and III are due to Liapunov,
whereas, Theorems II and IV are due to Krasovskii. 2 more detailed
discussion of the theorems can be found in the text by L. Meirovitch
{(see Reference 1, Section 6.7).

The Hamiltonian as a Liapunov Function

We shall show next that under certain circumstances the Hamil-
tonian can be used as a Liapunov function. Taking the total time
derivative of H from Eg. (16) and using Egs. (10) and (11), as well

as boundary conditions (12) and definitions (14), we obtain

~ ~

i1 =S (@, b, + Q, v + 0 w_)aD_ (30)
C C C .
e

c
D

12




Next we assume that the damping forces are such that H is negative
semidefinite
(31)

are never iden-—

<o

Moreover, due to coupling, the forces éu p QV ’ Qw

tically zero at every point of the phasecspacg butcthey reduce to
zero at an equilibrium point. Hence, if the Hamiltonian H is positive
definite at an equilibrium point, then by Theorem II, H can be re-
garded as a Liapunov function and the equilibrium point under considexr-
ation as asymptotically stable. On the other hand, if H is not pos-
itive definite and there are points for which it is negative, then

by Theorem IV the equilibrium point is unstable.

; In view of the preceding discussion, we shall consider the Ham-
iltonian as a Liapunov function. As indicated by Eg. (23), the equi-
(15)

Hence, the equilibrium positions are the solutions

librium positions are those rendering the right sides of Egs.
equal to zero.

of the equations

oH

— - ___._.__a == ] =
ape' e 0 r aei 0 ¥ 4 1 l,2,3
i
- 3H _ JH _ 9JH =0 )
op op 3P
e Ve Wc,/ {(32)
oH ' , . ‘
T + O\Zu [uc,Vc,WC] = 0 s .
o} c > at every point of De
_ H _
=5 +wZv [uc,vc,wc = 0
c c
JM Ly -
oW, oW, [uc,vc,wc] 0 )

To test the positive

definiteness of the Hamiltonian, we use

6.7).

represent the elastic motion by appropriate modes of vibration, derive

Sylvester's criterion (see Reference 1, Sec. To this end, we

the quadratic form associated with the Hamiltonian in the neighborhood

of the equilibrium and investigate the sign properties of the Hegsian

matrix, namely, the matrix of the coefficients of the quadratic form.

13



The Stability of High-Spin Motion of a Satellite with Flexible

Appendages.

The general theory developed in the preceding sections will
now be used to investigate the stability of a.satellite simulated by
a main rigid body and six flexible thin rods, as shown in Figure 2a.
In the undeformed state the body possesses principal moments of inertia
A,B,C about axes x,y,z, respectively, and the rods are aligned with
these axes. The body is initially spinning undeformed about axis z
with angular velocity 2. The domain of the el;stic continuum D,

consist of three subdomains:

D, : = (h+2 ) <x <=-h ,h <x< (hx+2x) ;) S, =+ h_, + (hx+£x>
D : - (h +2 < < - h h < < (h_+2 S_ =+ h + (h +2

y (hytty) < v y By ¥ < gty Sy =t hy, ok (hte)
D, : = (h+2 ) <2z < ~-h,  h <2z« (h+2) , S, =+ h , + (b +2 )

Hence ¢ = xi + yj + zk over D—De, r = xi over D.r = yj over Dy’ and
r = zk over Dz' Assuming only flexural transverse vibrations, it
follows that

u=u_ = ] + k u = u = v i+ w__k r = i + z k over D
o ~% Vi3 Wk v - "X cx 3. cx~ ' =¢ Yol C- X
3 \ . . .
u=u =ui+wk, u=u =u i+w_k ,r ==x3i+ z k over D
-~ -y Yy~ y~ ~c *~Cy Cy~ cy~ ~C C C~ Y
= = i + y = =u__i+ v_ 1 r = x.i + j over D
BT My T U T VRl e Zez cz= " Vezd ' ¢ c= © Yl z

From Egs. (2) we conclude that the moments and products of inertia

of the deformed body have the values

_ 2 . 2 2 : 2
JEE = A + fD Py (Vg Vo, ) dx + jD Py dy + fD P, Ve, 42
b4 v z
_ | 2 2 2 » 2
Jnn = B + fD PWoy 9% + ID py(ucy + wcy) dy + jD p Uy, dz
X y z
_ - 2 2 2 .2
I, =€t fD Py Vey X + jD plcy O F fD pz(ucz+vcz)dzv
x y z
(33)
JEn = Jng = fD P XV o dx + ID pyyucy dy fD P U, Ve, 97
X : y z

14



J = J = Xw dx + u_w
£L 43 fD Px™"ex I pyPey¥ey

dy + [ p_zu_, dz
x y D,

cz

Jg_ =3 =

e n dy + j p,2V dz

vV W dX+J'pyW
D CZ

Y
p X cx cx y* cy D
X y zZ

where Pyt P represent mass per unit length associated with the

p
y'"z
respective rods. Moreover, the elements of the matrix {K} in Eg. (3)
have the form -

Kg = ID px(vcchX - vcchx)dx + ID pyywcy dy - [D P52V oy dz
x y z
Kn = - fﬁ pEW,, dx + fD py(wcyucy - wcyucy)dy + ID p,Zu,, dz (34)
X y : z
K; = ID PyXVey 9% - ID Py¥ley dy + ID Py (MepVey = UopVey) 82
X y z
whereas the last term in Eg. (3) becomes
: '2 '2 ‘2 -2
f ( + vC + W )dm = 7 f pX(VCX + wcx)dx + jD py(ucy + wcy)dy
x Y
2 s a2 .
+ ] pplug, * ch)dz ' (35)

We shall assume that the mass of the rods is symmetrically distributed,
namely that p(-x) = p(x), p(-y) = p(y), and p(-2) = p(z).

If the rotations are as shown in Figure 2b, it is not difficult
to show that ‘

~

cos 62 0 -sin 92 cosvel
[6] = N 0 1 sin el ’ {36)
Ls:Ln 62 0 cos el cos 62

from which it can be concluded that 63 is ignoréﬁle, and the kinetic
energy has the form (20). To write the kinetic energy explicitly, we
.need the matrices [I] and'{L}, which, according to Egs. (6), have the
elements ‘

15



2 2

Ill =co, Jgg - 2 $6,C6, Jg; + s 6, JCC
T2 = Jnn
133 = czelszezJEg + szelJnﬁ + czelczengg + 2selq91862J£n

+ 2C26 sg,ce,.,J__-— 2s8,C0,CH0,J

17727727 g 1771772 " nt
112 = 121 = --(CQZJEn + s62 Jnc) ' (37)
I13 = i31 = celsezcez(JCC - JEE) - selcengﬁ - cel(czez~sze2)3gC
- seiseang
123 = I32 = celsengn + selJnn - celceanC
and

Ll = 092 Kg + 562 Kg
L2 = Kn (38)
’L3 E - 80,004 KE + 88, Kn + celcé2 KC

where sei = gin ei ’ cei = COS ei (1 =1,2).

We shall be interested in investigating the stability of the
high-spin motion in which the undeformed satellite rotates with the
constant angular velocity Qg about axis z. Hence, we consider the
stability in the neighborhood of the equilibrium point

.el =62 = ucy.= Yoz ¥ Vex T Vez T Vex T wcy =0
(39)

= é == X p—4 X = ¥ - \.7 - y = . — 0

2 cy cz cx cz cx cy

®
Denoting this equilibrium point by the subscript E, disregarding con-
stant terms and terms of order higher than two, we use Eqs. (17) and
(20), in conjunction with Egs. (21), (33), (34), (35), (37), and (38),
and obtain the Hamiltonian in the neighborhood of E in the form
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_l "2 t2 * . - .
HE = 7{‘Ael + B62 + 261( SD pyywCy dy SD pzzvczdz)
Y -2
. By 2 2
+ 282( SD p zuczdz - SD P XV dx) + (—EQ [(C-B)el
Z X
5 .
+ (C—A)e2 + 261( gD pyywcy dy + SDpzzvcz dz)
Y Z
- 26, ( D __XW dx + g o _zZu dz).— g V2 dsx
2 X7 ex z" ¢z PxVex
D D D -
X z X
2 1 .
SD pyuCy dy SD p (uc + v )dz:] E% SDprvcxdx
Y z X
- . 2 <2 «2 g o2
S pyyucy dy)”® + S pX(vcx + wcx)dx + py(ucy
D D D
Y X Y
2 s 2
+ SD p lu_, + ch)dz}+ Ve
. .
where e recall that
Uey = Uy 7 %o 1 Vo TV T ¥ r Vex TV T %e
Uoy = Uy 7 Ko 0 Vo T Vg T Yo 1 Wy T Wy 7 Zg
in which
_1 1(
Xo = HS pyuydy + - P LU, dz
D D
y z
_ 15 1
Yo = &) PxVgdx t Eg PV, d2
D D
X z
-1 S
z, = Eg pxwxﬁx + = pywy dy
=D D
X Y
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We shall now consider the form of the elastic potential energy.
To this end, we must take into account the effect of the centrifugal
forces. Because the satellite has significant spin about axis z,
whereas the angular velocities about axes x and y are relatively
small, the centrifugal forces acting over the domains Dx’ Dy’ and
D, are all different. First we wish to distinguish between in-plane
and out-of-plane vibrations of the rods associated with domains Dx
and Dy‘ Moreover, we must distinguish between axial and transverse
components of the centrifugal forces. It is not difficult to show
that domains DX and Dy are subjected to the axial component of the
centrifugal force alone for the out-of-plane vibration and to both
the axial and transverse components for the in-plane vibration. On
the other hand, domain DZ is subjected to the transverse component
alone. The transverse components are accounted for in that part of
the kinetic energy not involving velocities, so that only the axial
centrigual forces must be included in the elastic potential energy.

Hence, the potential energy can be written in the form

\ Ver = Venx * Very t VeLz (43)
where
1 azvx_z ' azwx 2
VELx = §'S [EIV~ ( 2) + EIW ( 2) ] dx
DX X ax : X .. 23X
v, 2 ow. 2
1 X X
AN N N
D
X
1 azuy 2 3 wy 2
Vory = % g [EIu (—% + B, (— ] dy (44)
Dy % Y% y oy
au._. 2 aw._ 2
;S ) y y ]
*7) py[ D+ 50 | ay
Y
1 S azuz 2 azvz 2
v.. =1 [EI (—2) + EI_ (—2) ] dz
ELz 2 Dz uZ 322 v, azz
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where Px and Py represent the axial centrifugal forces present (seeg,
"for example, Ref., 5, p. 443).

, The elastic potential energy can be written in a more convenient
form. To this end, we recall that the boundary conditions for the

clamped~free rod corresponding to the domain hx < x < hX + L, are

8v, (x.t)
VX(X’t) = T =0 at x = hX '
: / (45)
22, (x,8) [ 3%y (x,t) }
EX ———— = | BT e = 0 at x = h_ + ¢
Vg axz 90X % sz X b4
Similar boundary conditions can be written for the remaining rods.
In view of this, integrating Egs. (44) by parts and inserting the
result in (43), we obtain
1 32 vy 22 8%,
\Y/ = —{S [v —= (EI —=) + w, —5 (EI )] dx
EL 2 pL X 3x2 Vo aXZ X aX2 Yy 3x2
i ] avx 9 aWx
S gD | Vx 7% Px 7% T x 3w Py BX)J dx
X .
L2 524 )2 '“azwy
+ S v, ;"5'(E1u _;~%) +w, —5 (EI_ 2)] dy
Dy Y y 23y oy y 29y
- 3 auy 3 W
=N Ju P —=) + w_ == (P Y d
: gD_y’é'fi(y 5y T ¥y 7 By ay)]y
y - AP
+ u —= (EI ) + v = (EI )] dz {(46)
Dzh z az2 u, az2 p az2 v, 822 J

Thé complete expression of the Hamiltonian in the neighborhood of the
equilibrium position E is obtained by inserting expression (46) into
(40).

Examining the Hamiltonian, Eg. (40), and the companion eqgua-
tions (41), it is obvious that the elastic displacements are not

independent of one another. ‘Although it may be possible to apply
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the theory of Reference 3, perhaps by devising a testing function

K which is known to be smaller than H and in which the elastic dis-
placements are independent, we shall consider at this point a stabi-
lity analysis by modal analysis.* To this end, we represent the

elastic displacements by the following series

o) e
X X
v, = o (XIV, (k) + 2 b L (x)V_ . (t)
X {Zy 'xoi Xoi ! xXeil xei
o, , e, over DX {47a)
Y T — wxoi(x)wxoi(t) + 2;- wxei(x)wxei(t>
i=1 i=1
o e
g (y) (t) y (y) (t)
u, = 3y . U . + . U .(t
Y e ¢y01 Y yoi in ¢ye1 b4 yeil
o) e . over D 47b
g (yIW (t) y (Y)W (t) ! | |
w_ o= . . + . .
¥y by wYOl 4 yoi = Ipyel b4 yei
o) e
z z
Uz © 21 4)zoi(z)Uzoi(t) + : ¢zei(z)Uzei(t)
o i=1 ° i=1
!oz ‘ e, » ‘ over DZ {(47¢)
Vg = Z: 1pzoi(t)vzoi(t) + 1l’zei(z)vzei(t>
i=1 i=1
where o, e, Oyr &, Oy, €, are constantilntegers, L
v. ., ===, V_ . are eigenfunctions associated with the elastic
Xoi zei
- rods, and oni, Vxei’ N - Vzei are corresponding generalized

coordinates, in which the letters o and e designate odd and even modes
¢ .,'(P T

of deformation, respectively. The functions ¢_ .,
xoi xel xoi

Y. . satisfy the relations
xel

* Work is being continued on an analysis based on Reference 4, and
recent developments indicate that such an analysis is in the realm
of possibility.
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¢xoi(x) =~ ¢xoi(—x) = ¢xei(x) = ¢xei(—x)

{48a)
Vos (X)) = 7 oy (7)) = Wy () =y (%)
¢yoi(y) =7 ¢yoi(—y) = ¢’yei(y) = ¢yei(—y)

{(48Db)
Vyoi (¥) = = Voo (7¥) = b os (v) = v, (-y)
bp0i(2) = = b, (-2) = ¢zei<z) = $g04 (72)

{48c)
Vooi(Z) = = V05 (=2) = ¥, (2) = Vyei (72)

Consistent with our previous discussion of the nature of the
centrifugal forces, we recognize that the eigenfunctions entering
into expressions (47) are defined by two distinct types of eigenvalue
problems, namely, one type for the vibration of the radial rods associ-
ated Yith domains DX and Dy and another type for the axial rods associ-
ated with domain D, . For the radial rods, a typical eigenfunction,

Say ¢3¢ Must satisfy the differential equation

42 a%s
7 (EIV
dx x dx

d¢xoi - A2 0

xoi) _d )
X dx vxi

2 E}Z (P ¢ * 7 i=l,2f’"~m §49)
over the domain hX < X < hx.+ Lo o where dsoi is subject to the

boundary conditions

(b)) dq’xoi - 0
P0i'By) = 5% <=h :
X i=l,2,-—- {50}
2 2 R |
d%¢_ . d%¢_ . :
XOL1 _d XOoi _
Elvk dx2 T dx (EIV a2 ) =0
x=hx+£X x=hX+JLX
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The quantities Agxi (i=1,2,-~--) are the associated eigenvalues.

§imilar eigenvalue problems can be defined for ¢xei' Veoi’ Vyei
¥ and wyei' The solution of the eigenvalue problem

¢ yoi' d>yel’ yoi’
defined by Egs. (49) and (50) is discussed in Ref. 5 (see Sec. 10-4).

The axial rods are not subjected to axial forces, so that a

typical eigenvalue problem, say for ¢zoi’ is defined by the differential

eguation
2
2 d¢_ . , :
a zoi, _ ,2 . o
—u (BL, ——7 ) = Mgj Py bp0s + 15102, (51)
dgz z dz

whieh must be satisfied over the domain hz < z < hZ + 22 , wWhere the
funetion ¢zoi is subject to boundary conditions of the form (50).
zei’ Yzoi’ and Vseir
If the rod is uniform, the solution of the eigenvalue problem can be
taken directly from Ref. 5 (Sec. 5-10).

Fer uniform or nonuniform rods the solution of the eigenvalue

§imilar eigenvalue problems can be defined for ¢

problem (49) can be obtained by one of the approximate methods des-
eribed in Ref. 5 (Ch. 6), and the same can be said about the eigen-
valuegproblem (51) if the rod is nonuniform. In the sequel we shall
regard all the eigenfunctions and associated eigenvalues as known.

The eigenfunctions possess the orthogonality property. Moreover,

they can be normalized, so that

SD Pxdxoi (¥) xoJ(x) dx = 284,

X
S px xel(XH) (X) dx = zsij 113 =1,2, --- (52)
D
>4
S Py XOl(x)q) (x) dx = 0
DX

where Gij is the Kronecker delta. Similar expressions can be written

for the remaining eigenfunctions.

——
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In view of the above, a typical term in expression (46) becomes

g 32 32vX 5 avx 2;%
v [——— (EX ) - 2— (P -—)] dx = S : ( b o V.
Dx b4 ax2 vx aX2 X X 99X p ] X001 "xoi
X
e ’ o 2~
X X 2 d¢ ¢
d X0 d x09
+ b+ V .)x{ \Y .[———(EI ) - =— (P )]
i=1 xel xei J=1 X0l dx2 vx dx2 dx x dx
e 2
b4 2 d ¢ . - dé, . ‘
+ vxei[ dé (EIV ng) - %E(Px die )]} dx
j=1 dx X dx
oX e, B
- 2 2 2 2 .
2(2;13A vxi v X0 + g;i A vxi v xei) (53)

Hence, the potential energy VEL can be regarded as a function of the
generglized coordinates V , etc.

) xoi’ vxei’» XO1i
From Egs. (41) we conclude that the Hamiltonian depends on the
__displacements X 1Y or and 2 of the center of mass, which, in turn,
depend on the elastic displacements according to Egs. (42). Substi-
tuting Eqé. (47) into (42), we conclude that the displacements XY
;U Y

‘ yoi’Uyei z0i’Vzei xoif
It follows that the Hamiltonian, Eg. (40), depends on the coordinates

Z depend on the generalized coordinates U

el’BZ'Uyoi’Uyei’Uzoi’ -—-- as well as their time derivatives. Hence,

HE is a quadratic form in 4(l+ox+ex+oy+——~+ez) variables. For stabil-

ity, HE must be positive definite in these variables.

Examining expression (40), we conclude that Hp can be written

as the sum of a quadratic form depending on the velocities alone and

another quadratic form depending on the coordinates alone

H, =H + H

g = g+ Hyp (54)



Furthermore by using even and odd modes to represent the elastic
displacements no coupling between the even and odd modes occurs.

Hence, each of the testing functions Hqy

and H

E 2E

may be represented

as the sum of two quadratic forms, one involving only even modes and

on involving odd modes and the rigid body motion only

where

ex Cx
= (s

1Ee i=1 =1
- 21 -I ')

vziTvzj

b e e

X x
+ ) 2 (s

i=1 j=1

- 2T .T _.)
WYl wWyJj

Lo

H1g = Hipe ¥ H1po
H2E = H2Ee * HZEO
e, e,
iy~ 2vaivaj) xei xej Z; %; (Gij
e e,
i —4221 R
zei zej o e vxilvziVxei'ze;
e. e
. Y Y
19 7 2uxituxs) YkeiWxes * (854
] ER et I 5 N TS
e. e_— .
*® e Xy L I
W W . -4 I _.I W W
yei'yej =155 wxiwyd xei'yej
: z:z
ij—2Iuyi;uyj)Uye1 vej + g;i j=l(6 uziquj
I .T.__.0_ .U .
uyituzj yei- zej
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.U .
zel zej

{(56a)



and .

o o
1 .2 .2 . y . i .
Hypo = §'§Ael + B62 + 40 £ Jwyiwyoi 2;-,Jv21 zoi)
i=1 i=1
o o, o, o,
*+éz - I W) +2 )Y ) (..
o u21 zoi {5y wxixoi i1 4=1 ij
_ 29 “vxit vx;g)V . 25; E; 2Jﬁ§1 uyj, g
xoi xog = 1 C yoi yoj
j=1
Ci v o, o,
+ % Joxidu 'ﬁxoiﬁ oy T 2(2: : i¥ E:' ﬁi
i=1 j=1 Y] yeJ i=1 i=1
o, oy i
> 2 o2
+ ) W .+ > W .)} (56b)
e x0i i;y yoi’
where
th-!-lx th+'QX
vai = pr¢XOl(x)dx ! wai = P waoi(x)dx
'h h
bl X
(vamx—mz)l/2 hx+£x
vai = - px¢xel(x)dx {(57)
hx
(2m-—mx'—my)l/2 hx+2x
wai = m S P 1l’xe:n.(x)dx
h
S Ux
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in which m, = szlx’ my = 2py2y, and m, = 2p - Similar expressions

can be written for JVZl,J yi,——— and IYZl,Iuyi,———. Moreover, the

conserved momentum has the value 83=QSC corresponding to the eguili-
brium position of pure spin about the z axis in the undeformed state.
Using again the normal mode expansions for the elastic displacements,

we obtain for HZEe and H2Eo

e e
x
2Ee vy vxy g Gij s vaivaj:]Vxeivxej

|t
-
Wl

0]
0

Z Z
+ ) [(AZ —02) s, +20°

T .1 .i}v V.
vzj s’ i “Ys TvziTvz] zei zej

-
I
|
[}
!
Pt

X
b

[
.
i
=

(D
v
®

. 5., I .1 .]U U
uyj s’ ij s TuyiTuyj | “yei“ye]

]
i
e
w
|
=

- S

0]
N

. L II C]U 'U L]
zi s’ ij s TuziTuzj zel zej

=
il
|
.
i
=

| o

ey ez ‘ex y
2 w2 2 .2
. + .

m N

and

O . .
+
Z: JVZl ZOl)

= % Qi [(C—B)ei + (CfA)e + 4e (El J P

2Eo wyi y01
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2 2.\ 2
462(2; JuziYz0i * £~ Juxi x01)] Z: (Avxi - Qs)vxgi
i=1 i=1
©, Oy ' o,
2 2 2 2. 2

+ i - 3 + : - . R [,

g;l (AVZl as)V SR %;1 (Auyl 6 )UYOl + g;' (Au21 QS>UZQ

o o)

x y

* o A&?xi W>2<oi + szv i Wzoi (58b)

i=1 i=1 Y y

As indicated previously, the time derivative of the Hamiltonian
is negative semidefinite. Hence, due to coupling, if the Hamiltonian
is positive definite the eguilibrium is asymptotically stable, and if
the Hamiltonian can take negative values in the neighborhocod of the
origin the equilibrium is unstable. But by Egs. (54) and (55) the
pe’ H1po’ Home 379 Hppo
so th?t for H to be positive definite it is necessary that Hipar HlEo'

HlEo’ -——, can be

Hamiltonian can be written in four parts, Hl

--- all be positive definite. Expressions for HlEe’

written in the general form

n, ng = By Dy
1 1
H = = E 0.:2 9. 9 ., H = %5 }: 0nis @ dn4
1Ee 2 =1 5731 eij “ei “ej 1Eo 2 i=1 =1 oij “oi “oj
(59)
n,2 ng ng nO
H, =3 Bois Goy Jgqr H 1y B g

— Gees a 2 . -’ - " A
2Ee 2 i=1 =1 eij “el “ej 2Eo0 2 i1 j=l oifj o1 0]

4

where dai and dq,; are generalized coordinates and dei and g,y are
generalized velocities. The aeij’ aoij’ Beij and Boij represent
constant coefficients. According to Sylvester's criterion (see
Reference 1, Sec. 6.7), H H

definite if conditions

H and H are positive

IEe’ “1Eo’ " 2Ee 2Eo
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[aeij‘ >0 4 lB

ilj = 1121‘—_k;k = 1121”""5'1'1 {60)

]aoij} >0 \soij\ > 0

are satisfied, which represents the conditions that all the principal
minor determina£es associated with the matrices [ae], [ao], {Be} and

[BO] of the coefficients be positive. The matrices [ae], [ao], {Be}

and [80] are referred to as Hessian matrices.

Numerical Results

The general solution of the problem of stability of a rigid satel-
lite with three pairs of uniform rods has been programmed for digital
computation, and a numerical solution has been obtained on an IBM 360
computer. Results are presented for the case in which the rods in
the radial directions are of equal length and the satellite possesses
equal moments of inertia about the x and y axes. Moreover; all rods
have egqual mass densities and stiffness properties, in addition to the
rigid body dimensions h p hy and h being equal. The above restrictions
are placed only on the numerlcal solutlon in order to fac1lltate the
__presentation of data; there are no such restrictions placed on the
computer program. Figures 3 through 6 show the allowable spin ratio
Qs/Auzl
as a parameter. The region below the appropriate curve is stable.

for stability as a function of Ragr with the length ratio zr/zz

These curves show that the allowable spin ratio Qs/Auzi must be lower
than unity; the extent to which it must be lower than unity depends on
the system parameters., It should be noted from Figures 4 through 6
that the most restrictive region of stability is associated with the
parameter zr/zz = 0, némely the case in which there are no radial rods.
We may then conclude that any stable satellite possessing axial rods
alone will remain stable with the addition of radial rods. Indeed the
addition of radial rods increases the region of stability significantly
and for length ratios zr/ﬂz > 10 the allowable spin ratio is very near
unity. Figure 7 shows the effect of changing the rigid body inertia

ratio CO/AO on the allowable spin ratio for a fixed value of the length
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ratio zr/zz, Again the region below-the appropriate curve is stable.
As expected, an increase in CQ/AQ increases the stable region. Figure
‘8 shows the effect of changes in the parameter HZ, where Hz = hz/zz.
Again the region below the appropriate curve is stable, Figure 8

also shows that increasing Hy yields a slight increase in the stabil-
ity region.

Por comparison purposes, a problem which can be regarded as a
special case of the present one, in the sense that it considers only
spin axis rods, has been considered; this is the problem investigated
in Reference 4. Results for the four-mode approximation and those
of Reference 4 are presented in Figure 9 and, as expected, they
indicate that the criteria obtained in Reference 4 working directly
with the hybrid system of equations are more stringent than those
obtained here by means of modal analysis,

Summary and Recommendation for Future Studies

The mathematical formulétion associated with the problem of the
Astabi%ity of motion of a satellite consisting of a main rigid body
and three pairs of flexible booms has been completed. The booms are
capable of bending. in two orthogonal directions. Whereas the rota-
tional motion of the body is described by generalized coordinates
depending on time alone, the elastic displacements of the booms depend
on spatial position and time. Because of the flexibility of the booms,
the center of mass of the body is continuously shifting relative to
the main rigid body. These displacements, however, do not add degrees
~of freedom since they ean be expressed in terms of integrals involving
the elastic displacements, The formulation is appreciably more com-
plete than that of Reference 2, Assuming no external torgues, one
of the coordinates deseribing the rotational motion is ignorable.
| The Liapunov second method has been chosen for the stability
analysis because it is likely to yield results which can be inter-
preted more readily than those obtained by a purely numerical inte-
gration of the equations of motion, Due to coupling of the elastic
displacements, it is not feasible to use the stability method developed
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by the principal investigator (see References 3 and 4). Instead,
modal analysis is used to reduce the system from a hybrid to an
entirely discrete one. Since the elastic vibration results in energy
dissipation, according to the Liapunov second method, the equilibrium
position is asymptotically stable if the Hamiltonian is positive de-
finite and unstable if it can take negative values in the neighborhood
of the equilibrium.

The equiliﬁrium position investigated corresponds to the high-
spin motion of the undeformed satellite about one of the principal
axes, namely, the z axis. The constant angular velocity in that
position is denoted by 2. The stability of the equilibrium is in-
vestigated by means of a computer program based on Sylvester's criter-
ion.

The formulation is quite general, in the sense that booms of ar-
bitrary flexural stiffness and mass distribution are considered. For
a numerical solution the booms are assumed uniform. Although the
results presented are numerical in nature, there appears that a possi-
bility exists for deriving closed-form criteria in terms of infinite
serie% associated with the natural modes of the elastic booms. This
possibility is presently being explored.

Work is being continued on a stability analysis based on the
formulation of Ref. 4, which works directly with the hybrid system.
Recent developments in this regard make the outlook quite promising.
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Figure | — The Flexible Body in an Inertial Space
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Figure 2a — The Flexible Satellite
2b— The Satellite Rotational Motion
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Figure 9 — Stability Regions in the Parameter
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